Distributed Variational Representation Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Bayes Blocks for Variational Bayesian Learning

In this work preliminary results on a distributed version of Bayes Blocks software library [1, 4] are presented. Bayes Blocks is a software implementation of the variational Bayesian building block framework [7] that allows automated derivation of variational learning procedures for a variety of models, including nonlinear and variance models. The library is implemented in C++ with Python bindi...

متن کامل

Distributed Multi-Task Learning with Shared Representation

We study the problem of distributed multitask learning with shared representation, where each machine aims to learn a separate, but related, task in an unknown shared low-dimensional subspaces, i.e. when the predictor matrix has low rank. We consider a setting where each task is handled by a different machine, with samples for the task available locally on the machine, and study communication-e...

متن کامل

Learning Eye Vergence Control from a Distributed Disparity Representation

We present two neural models for vergence angle control of a robotic head, a simplified and a more complex one. Both models work in a closed-loop manner and do not rely on explicitly computed disparity, but extract the desired vergence angle from the post-processed response of a population of disparity tuned complex cells, the actual gaze direction and the actual vergence angle. The first model...

متن کامل

Distributed Word Representation Learning for Cross-Lingual Dependency Parsing

This paper proposes to learn languageindependent word representations to address cross-lingual dependency parsing, which aims to predict the dependency parsing trees for sentences in the target language by training a dependency parser with labeled sentences from a source language. We first combine all sentences from both languages to induce real-valued distributed representation of words under ...

متن کامل

Idest: Learning a Distributed Representation for Event Patterns

This paper describes IDEST, a new method for learning paraphrases of event patterns. It is based on a new neural network architecture that only relies on the weak supervision signal that comes from the news published on the same day and mention the same real-world entities. It can generalize across extractions from different dates to produce a robust paraphrase model for event patterns that can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2021

ISSN: 0162-8828,2160-9292,1939-3539

DOI: 10.1109/tpami.2019.2928806